AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The AUSTRAL VLBI Observing Program

Weston, S; Plank, L; Lovell, J; McCallum, J; Mayer, D; Reynolds, C; Quick, J; Weston, S; Titov, O; Shabala, S; Bohm, J; Natusch, T; Nickola, M; Gulyaev, S
Thumbnail
View/Open
art%3A10.1007%2Fs00190-016-0949-y.pdf (2.086Mb)
Permanent link
http://hdl.handle.net/10292/10372
Metadata
Show full metadata
Abstract
The AUSTRAL observing program was started in 2011, performing geodetic and astrometric very long baseline interferometry (VLBI) sessions using the new Australian AuScope VLBI antennas at Hobart, Katherine, and Yarragadee, with contribution from the Warkworth (New Zealand) 12 m and Hartebeesthoek (South Africa) 15 m antennas to make a southern hemisphere array of telescopes with similar design and capability. Designed in the style of the next-generation VLBI system, these small and fast antennas allow for a new way of observing, comprising higher data rates and more observations than the standard observing sessions coordinated by the International VLBI Service for Geodesy and Astrometry (IVS). In this contribution, the continuous development of the AUSTRAL sessions is described, leading to an improvement of the results in terms of baseline length repeatabilities by a factor of two since the start of this program. The focus is on the scheduling strategy and increased number of observations, aspects of automated operation, and data logistics, as well as results of the 151 AUSTRAL sessions performed so far. The high number of the AUSTRAL sessions makes them an important contributor to VLBI end-products, such as the terrestrial and celestial reference frames and Earth orientation parameters. We compare AUSTRAL results with other IVS sessions and discuss their suitability for the determination of baselines, station coordinates, source coordinates, and Earth orientation parameters.
Keywords
Geodesy; Very long baseline interferometry (VLBI); Celestial reference frame (CRF); Terrestrial reference frame (TRF); AUSTRAL
Date
May 31, 2016
Source
Journal of Geodesy, 1-15. doi: 10.1007/s00190-016-0949-y
Item Type
Journal Article
Publisher
Springer Journals
DOI
10.1007/s00190-016-0949-y
Rights Statement
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library