AUT LibraryAUT
View Item 
  •   Open Theses & Dissertations
  • Doctoral Theses
  • View Item
  •   Open Theses & Dissertations
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatial-temporal data modelling and processing for personalised decision support

Othman, Muhaini
Thumbnail
View/Open
Whole thesis (12.39Mb)
Permanent link
http://hdl.handle.net/10292/9079
Metadata
Show full metadata
Abstract
The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised (individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification.
Keywords
Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk prediction
Date
2015
Item Type
Thesis
Supervisor(s)
Kasabov, Nikola; Pears, Russel; Parry, Dave
Degree Name
Doctor of Philosophy
Publisher
Auckland University of Technology

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open Theses & DissertationsTitlesAuthorsDateThesis SupervisorDoctoral ThesesTitlesAuthorsDateThesis Supervisor

Alternative metrics

 

Statistics

For this itemFor all Open Theses & Dissertations

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library