AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Research Institutes, Centres and Networks
  • SERL - Software Engineering Research Laboratory
  • View Item
  •   Open Research
  • AUT Research Institutes, Centres and Networks
  • SERL - Software Engineering Research Laboratory
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting software build failure using source code metrics

Connor, AM; Finlay, J
Thumbnail
View/Open
vol1no5_1.pdf (734.8Kb)
Permanent link
http://hdl.handle.net/10292/7088
Metadata
Show full metadata
Abstract
In this paper, we describe the extraction of source code metrics from the Jazz repository and the application of data mining techniques to identify the most useful of those metrics for predicting the success or failure of an attempt to construct a working instance of the software product. We present results from a study using the J48 classification method used in conjunction with a number of attribute selection strategies applied to a set of source code metrics calculated from the code base at the beginning of a build cycle. The results indicate that only a relatively small number of the available software metrics that we considered have any significance for predicting the outcome of a build. These significant metrics are discussed and implication of the results discussed, particularly the relative difficulty of being able to predict failed build attempts. The results also indicate that there is some scope for predicting the outcomes of an attempt to construct a working instance of the software product by analysing the characteristics of the source code to be changed. This provides the opportunity for software project managers to estimate the risk exposure of the planned changes in the build prior to commencing the coding activities.
Keywords
Data mining; Jazz; Software metrics; Software repositories
Date
September 15, 2011
Source
International Journal of Information and Communication Technology Research, vol.1(5), pp.177 - 188
Item Type
Journal Article
Publisher
ARPN International Journal of Information and Communication Technology Research
Publisher's Version
http://esjournals.org//journaloftechnology/Download_September_pdf_1.php
Rights Statement
International Journal of Information and Communication Technology Research is partly sponsored by some non-governmental organizations. Being part of open-access initiative, the published research papers are freely available to everyone and we don’t apply any subscription charges for our readers or libraries.

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSERL - Software Engineering Research LaboratoryTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library