AUT LibraryAUT
View Item 
  •   Open Theses & Dissertations
  • Masters Theses
  • View Item
  •   Open Theses & Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sailboat and Kayak Detection Using Deep Learning Methods

Luo, Ziyuan
Thumbnail
View/Open
Thesis (2.785Mb)
Permanent link
http://hdl.handle.net/10292/15444
Metadata
Show full metadata
Abstract
Visual object recognition is one of the most important and tough problems in computer vision. It targets various visual objects within realistic and real-time images. In depth, deep learning has become a powerful method to extract features directly from input data, which has made great progress in identifying visual objects. Recently, machine learning methods based on deep neural networks play a pivotal role in the field of visual object recognition. In order to identify ships in digital image, the nets need to be trained with a set of labelled images. So far, great progress has been made in visual object recognition based on deep learning, but developing relevant modules is a thorny job. Therefore, in this thesis, we propose a designated methodology based on search neural structure (NAS) for the recognition of visual objects by using our own published datasets to improve the results of sailboat detection. In addition, we conducted data collection for sailboat and kayak detections so as to find the best parameters based on basic model of YOLOv5. In this thesis, we also compare the net architectures and seek the best one. We test the proposed model and compare it with others.
Date
2022
Item Type
Thesis
Supervisor(s)
Nguyen, Minh; Yan, Wei Qi
Degree Name
Master of Computer and Information Sciences
Publisher
Auckland University of Technology

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open Theses & DissertationsTitlesAuthorsDateThesis SupervisorMasters ThesesTitlesAuthorsDateThesis Supervisor

Alternative metrics

 

Statistics

For this itemFor all Open Theses & Dissertations

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library